THE AGE OF FOSSILIFEROUS BED (BOULDER SLATE MEMBER) OF GARHWAL SYNCLINE

RAVI SHANKER, J. N. DHAUNDALI AND H. M. KAPOOR
3, Gokhale Marg, Lucknow 226001

ABSTRACT—The paper deals with the authors’ views on the newly recorded fauna from Boulder Slate member (‘Volcanic Breccia’ of Middlemiss) of Garhwal Syncline.

INTRODUCTION

Ganesan (1971; 1972) brought to light a rich bryozoan fauna consisting of *Fenestella* aff. *eichwaldi* Stuckenberg, *F. garhwalensis* Ganesan, *F. occulata* McCoy, *Dogaddanella audeni* Ganesan, *Polypora middlemissi* Ganesan, *P. dieneri* Ganesan and *P.* sp. ‘a’ from the shale associated with the slate sequence exposed in the southern limb of the Garhwal Syncline, about 4 Km ESE of Dogadda (29°42’ : 78°31’) and about 200 meters west of Jogira (29°48’; 78°39’) in the district of Pauri Garhwal of Uttar Pradesh. This zone represents the basal part of ‘Volcanic Breccia’ of Middlemiss (1887).

Ravi Shanker and Dhaundial of this paper later located a number of new localities with rich brachiopod-bryozoan fauna in the same Garhwal Syncline, during the course of mapping; which appears to be more representative than reported by Ganesan and supplies better evidence of age and affinity.

The fossil bearing horizons are confined in the Boulder Slate member, at the sole of the ‘Lower Bijni Tectonic Unit’ in Garhwal nappe. The lithostratigraphic/tectonic sequence as established by Ravi Shanker and Ganesan (*in press*) is given below:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amri Unit</td>
<td></td>
</tr>
<tr>
<td>Upper Bijni Unit</td>
<td>Purple/white/green quartzite with subordinate green, grey slate</td>
</tr>
<tr>
<td>Lower Bijni Unit</td>
<td>d. Sandy Limestone</td>
</tr>
<tr>
<td></td>
<td>c. Gritty Quartzite</td>
</tr>
<tr>
<td></td>
<td>b. Boulder Slate</td>
</tr>
<tr>
<td></td>
<td>a. Quartzite and Slaty Phyllite</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GARHWAL THRUST</td>
<td>Rocks of Krol Belt</td>
</tr>
</tbody>
</table>
The presence of fossils was evident at several places though these were collected from the following five localities:

1. About 1.2 Km NNE of Gajwar (29°46′45″: 78°39′45″) and 0.8 Km NW of Ghaildalgaon (29°47′: 78°40′15″), near spring on Malethan-Konakholi foot-track.

2. About 0.5 Km SE of Ghaildalgaon on Sendikhal-Gajwar mule-track.

4. About 1.0 Km south of Anderson (29°47′: 78°50′30″) and 0.6 Km NE of Dabri (29°47′15″: 78°50′15″) on Rikhni Khal—Landsdowne mule track.

4. On hill slope 1.0 Km southeast of Angni (29°49′30″: 78°48′15″).

5. Western hill slope near Pasta (29°51′: 78°46′30″).

The Boulder Slate member is fairly thick (several hundred metres). It is traceable for over 70 Km. It comprises essentially of pebble slate, boulder slate, gritty slate, slaty shale with minor quartzite, conglomerate and greenish grey well cleaved pencil shale. The fossils are confined to shaly layers only. The shale occasionally contains rounded to spindle shaped pebbles/nodules, many of them phosphatic, a few contain fossils while others resemble with cinders, though their actual nature is still uncertain. The sequence of this member is closely akin to Fenestella Shale and Agglomeratic Slate of Kashmir (Middlemiss, 1910), but it is at present premature to compare them till its equivalents are established in the intervening areas.

The fossils are mostly ill preserved, distorted and highly weathered, which makes the specific recognition difficult. However, the present attempt has brought to light the following brachiopods, bryozoans, bivalve and crinoid stems from above localities besides those already known from Jogira (Ganesan, 1972).


REMARKS

The fauna from Garhwal Syncline, as known
from Ganesan (1972) and present collection, looks an admixture of elements reported from Fenestella Shale (Diener, 1915) and Agglomeratic Slate (Bion and Middlemiss, 1928; Reed, 1932) of Kashmir. It also shows elements of Po Series of Spiti (Diener, 1903). Many of the brachiopods of Garhwal shows affinities with the fossils from the equivalent fauna known from Eastern Himalaya (Muirwood and Oaklay, 1941), Nepal (Waterhouse, 1966), Tibet (Reed, 1930), Burma (Diener, 1911; Reed, 1927), New South Wales and Eastern Australia (Campbell, 1961; Campbell and Mc Kellar, 1969), Salt Range (Reed, 1931; 1936; 1944; Kummel and Teichert 1970 pp. 74-75; Grant, 1970) and Afghanistan and Chitral (Reed, 1925; 1931a).

No one however, can dispute Middle to Upper Carboniferous affinities of the fauna of Garhwal as considered by Ganesan (1972) but actual age is rather difficult to conclude. The fauna shows a number of fossils known from Yanad and Lehindajjar Gali sections of Fenestella Shale from Kashmir (Diener, 1915) which supports their equivalence; on the other hand the fauna of Marbal beds (Bion and Middlemiss, 1928) and a few elements of Nagmarg beds (op. cit.) and Bren (Reed, 1932) of Agglomeratic Slate, put fauna to younger affinity. The Marbal beds have been considered by Bion and Middlemiss (1928) as Upper Muscovian to Lower Uralian; while the Nagmarg beds as Upper Uralian. Kapoor of this paper, who carried out work recently on these formations in Kashmir, is of the opinion that both Lower and Upper Marbal beds are Uralian; while Nagmarg and Bren fauna show Sakmariyan and Lower Artinskian affinity. Keeping this in mind, the position of the Garhwal fauna is probably just above the Lehindajjar-Yanad fauna of Fenestella Shale and below the Lower Marbal beds; thereby representing an upper part of Westphalian.

Po Series of Spiti, has been considered to be equivalent to the Fenestella Shale of Kashmir, both in position and age. Thus the present fauna is younger to it. Diener (1915) has already indicated that the fauna of Fenestella Shale exhibits special features of its own; because its differences with the fauna from adjoining areas, as well from Europe and America; the little resemblance with the Mountain Limestone or to the Upper Carboniferous faunas of Russia are of insignificant value. On the other hand Po Series fauna has resemblance with the Mountain Limestone of Europe. Diener (op. cit.) thus was uncommittal on the age of Fenestella Shale, though considered it to be older than 'Perm-Carboniferous' whereas Middlemiss (1910) considered it probably of Middle Carboniferous. Since then the knowledge of the fossil fauna of Carboniferous from different countries have increased and it is now considered that the Fenestella Shale fauna though peculiar, but not unique to Himalayan region and it has some alliance with the fossils of similar age of Burma and Eastern Australia, (Campbell and Mc Kellar, 1969; Tables 6:2 and 6:3).

As considered here the Garhwal fauna to be Westphalian; there is every possibility of the presence of corresponding fauna in Kashmir. During the Carboniferous, as it looks, there has been a number of oscillations and pulsations in the basin, now occupied by the Himalayan region, causing obstructions to migration of life or developing narrow gaps for limited migration of forms (both laterally and vertically); thus giving rise to diversified
forms. The Garhwal fauna, therefore, has
given opportunity to palaeontologists to scan
the intervening areas between the known basins
of Spiti and Kashmir and also between Spiti
and Garhwal. Raina et al. (1971) and Datta
and Bhattacharyya (1971) have already reported
Permian and Triassic sequence between
Kashmir and Spiti, though Westphalian is still
unknown.

The fossil bearing beds of Garhwal, as
considered by Ravi Shanker and Ganesan
(in press), occupy a position of nappe, there-
fore are not in their original position. They
postulated that the root zone lies to the south
of the Central Crystalline axis and Main
Central thrust, but to the north of the Calc
Zones in parts of U.P. Himalaya. Kapoor
also believes that the root zone should not be
much far off, if the beds are allochthonous.
This fauna bearing bed of Garhwal is con-
sidered by Ganesan (1972) and Ravi Shanker
and Ganesan (in press) as Tethyan; it is of
course evident that this type of fauna lies
below the belt having Gondwana shelf elements
(i.e. Eurydesma fauna) in Kashmir and Eastern
Himalaya.

ACKNOWLEDGEMENTS

The authors are indebted to Shri V.S.
Krishnaswamy, Deputy Director General and
Shri S.C. Awasthi, Director, Geological
Survey of India for their keen interest in the
present study. They are specially grateful to
Shri T.M. Ganesan, for his opinion and sugges-
tions during the course of the work and
also for modifications in the manuscript.

REFERENCES

Bion, H.S. AND Middlemiss, C.S., 1928. The Fauna
of the Agglomeratic Slate Series of Kashmir.
Pal. Ind. N.S. 12.

Campbell, K.S.W., 1961. Upper Carboniferous Fossils
from Kuttang Rocks of New South Wales. Palaeo-
ontology 4 : 426-474.

Australian Carboniferous Invertebrate Sequence
and Affinities. Stratigraphy and Palaeontology-
Essays in Honour of Dorothy Hill : 77-119.

Occurrence of Some Bivalve Fossils in Chamba
District, H.P. Seminar on Recent Geological Studies
in the Himalayas, GSI. (Abstract) : 3.

Diener, C., 1903. Permian Fossils of the Central

Pal. Ind. N.S. 3 (4).

Idem, 1915. The Anthracolithic Fauna of Kashmir,

Ganesan, T.M., 1971. A Note on the First Record of
Fenestellid Bryozoa in the “Volcanic Breccia” of

Idem, 1972. Fenestellid Bryozoa from the Boulder Slate
Sequence of Garhwal. Himalayan Geology 2:
431-451.

Grant, R.E., 1970. Brachiopods from Permian Triassic
Boundary Beds and Age of Chhidru Formation,
West Pakistan. Stratigraphic Boundary Problems-
Permian and Triassic of West Pakistan. The Univ.
Kasama Press : 117-152.

Kummel, B. AND Teichert, C., 1970. Stratigraphy
and Palaeontology of the Permian Triassic Boun-
dary Beds, Salt Range and Trans Indus Ranges,
West Pakistan. Stratigraphic Boundary Problems-
Permian and Triassic of West Pakistan. The Univ.

Middlemiss, C.S., 1887. Physical Geology of British
Garhwal with Notes on the Route Traverses
through Jaunsar and Tiri Garhwal. Rec. geol.
Surv. India 20 (1) : 34-40.

Idem, 1910. A Revision of the Silurian-Trias Sequence

Muirwood, H. AND Oakley, K.B., 1941. Upper Pal-
aeozoic Fauna of North Sikkim. Pal. Ind. N.S.
31 (1).


